Published online February 10, 2022
https://doi.org/10.5141/jee.21.00082
Journal of Ecology and Environment (2022) 46:04
Adel Sepehr1* , Asma Hosseini1, Kamal Naseri2
and Atoosa Gholamhosseinian1
1Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad 0098513, Iran
2Department of Rangelands and Watershed Management, Ferdowsi University of Mashhad, Mashhad 0098513, Iran
Correspondence to:Adel Sepehr
E-mail adelsepehr@um.ac.ir
The authors of this article dedicate the present manuscript to Asma whose name also means heavens. She left us to meet God in the Heavens.
This article is licensed under a Creative Commons Attribution (CC BY) 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The publisher of this article is The Ecological Society of Korea in collaboration with The Korean Society of Limnology
Background: Plant vegetation appears in heterogeneous and patchy forms in arid and semi-arid regions. In these regions, underneath the plant patches and the empty spaces between them are covered by biological soil crusts (moss, lichen, cyanobacteria, and fungi). Biological soil crusts lead to the formation and development of fertile islands in between vegetation patches via nitrogen and carbon fixation and the permeation of runoff water and nutrients in the soil.
Results: The present study has investigated the association of biological soil crusts, the development of fertile islands, and the formation of plant patches in part of the Takht-e Soltan protected area, located in Khorasan Razavi Province, Iran. Three sites were randomly selected as the working units and differentiated based on their geomorphological characteristics to the alluvial fan, hillslope, and fluvial terrace landforms. Two-step systematic random sampling was conducted along a 100-meter transect using a 5 m2 plot at a 0–5 cm depth in three repetitions. Fifteen samplings were carried out at each site with a total of 45 samples taken. The results showed that the difference in altitude has a significant relationship with species diversity and decreases with decreasing altitude. Results have revealed that the moisture content of the site, with biocrust has had a considerable increase compared to the other sites, helping to form vegetation patterns and fertile islands.
Conclusions: The findings indicated that biological crusts had impacted the allocation of soil parameters. They affect the formation of plant patches by increasing the soil’s organic carbon, nitrogen, moisture and nutrient content provide a suitable space for plant growth by increasing the soil fertility in the inter-patch space.
Keywords: biological soil crusts, fertile islands, soil physicochemical parameters, vegetation patches
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |